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Review
Several lines of recent evidence have opened a new
debate on the mechanisms underlying the genesis of
rhabdomyosarcoma, a pediatric soft tissue tumor with a
widespread expression of muscle-specific markers. In
particular, it is increasingly evident that the loss of
skeletal muscle integrity observed in some mouse mod-
els of muscular dystrophy can favor rhabdomyosarcoma
formation. This is especially true in old age. Here, we
review these experimental findings and focus on the
main molecular and cellular events that can dictate
the tumorigenic process in dystrophic muscle, such as
the loss of structural or regulatory proteins with tumor
suppressor activity, the impaired DNA damage response
due to oxidative stress, the chronic inflammation and the
conflicting signals arising within the degenerated mus-
cle niche.

Rhabdomyosarcoma
Soft tissue sarcomas are rare mesenchymal tumors that
can develop in tissues such as fat, muscle, nerves, fibrous
tissues, blood vessels, or deep skin tissues. Rhabdomyo-
sarcoma (RMS) is the most common malignant childhood
soft tissue sarcoma, with an incidence of approximately one
individual per million people in the USA, and thus approx-
imately 400 children are affected each year [1–3].

Histologically, RMS is defined as a small round blue cell
tumor which expresses markers of myogenic differentia-
tion, including MyoD, myogenin, and desmin. Although
RMS originates from cells of the skeletal muscle lineage, it
may arise in both muscular and nonmuscular tissues in
disparate parts of the body. Histopathological and genetic
criteria define two main histological variants, termed em-
bryonal (ERMS) and alveolar (ARMS), and a third, less
common and found in adults, defined as pleomorphic
(PRMS). ERMS is characterized by a severe genomic in-
stability, often leading to loss of imprinting (LOI) or het-
erozygosis (LOH) in different chromosomal loci. ARMS is
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instead characterized by nonrandom t(2;13)(q35;q14) and
t(1;13)(p36;q14) chromosomal translocations that enable
the oncogenic expression of chimeric PAX3–FOXO1 and
PAX7–FOXO1 transcription factors [4,5]. Clinically,
ERMS presents at an earlier age, mainly in the head
and neck and retroperitoneum, and is associated with a
better prognosis, whereas ARMS is more common in older
children and adolescents, mainly in the trunk and extrem-
ities, and has a worse prognosis because it frequently
metastasizes to other tissues [6].

The high incidence of RMS in individuals affected by
some cancer-associated diseases, such as Li–Fraumeni,
Costello and Gorlin syndromes [7], and the generation of
various experimental animal models [8] strongly suggest
that RMS onset is favored by suppression of the p53
pathway in conjunction with the aberrant gain of activity
of different tyrosine–kinase receptors along the Ras axis,
whereas the same genetic hits in the presence of PAX3–
FOXO1 or PAX7–FOXO1 fusion gene products may result
in the appearance of the ARMS histotype [9–12].

Intriguingly, several lines of evidence suggest that nu-
merous mouse models of muscular dystrophy (MD) are
particularly prone to develop sarcomas, especially RMS.
In the following sections we briefly describe the main
features of MDs and summarize the dystrophic animal
models that are associated with RMS, before discussing
the potential mechanisms underlying RMS genesis in more
detail.

Dystrophic mouse models developing
rhabdomyosarcoma
Skeletal muscle is the most abundant tissue in the verte-
brate body and is primarily responsible for body locomo-
tion, posture, and breathing. Muscular patterning and
growth is determined by the coordinated spatial and tem-
poral action of distinct classes of myogenic progenitors [13],
particularly the satellite cells (SCs), a pool of dormant cell
elements closely juxtaposed to the plasmalemma of myo-
fibers under the basal lamina that contribute to the regen-
erative ability of skeletal muscle [14–19].

The complexity of the muscle architecture can be se-
verely affected whenever one of the extracellular and
intracellular elements is not properly functional. MDs
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Box 1. Muscular dystrophies

The mechanical resistance of skeletal, cardiac, and smooth muscle

cells is in large part due to the so-called DAG complex [148], which

at the sarcolemma acts as a molecular bridge interconnecting the

extracellular matrix (ECM) surrounding each myofiber with the

cytoskeleton (Figure I).

Most MDs depend on the loss of expression or function of

members of the DAG complex, leading to diseases that hamper a

patient’s mobility and vary enormously in terms of severity, age of

onset, selective muscle involvement, and inheritance pattern.

Furthermore, dystrophic patients frequently develop cardiomyopa-

thies because the expression of various structural sarcomeric and

nonsarcomeric proteins overlaps in skeletal and cardiac muscle

tissues. Although advances in genetic and stem cell based

therapeutic approaches have fueled hopes for effective therapies

[149], corticosteroid administration still remains the only effective

treatment available to counteract inflammation in MDs.
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Figure I. Common features of muscular dystrophies. Following alteration of

the DAG complex, the skeletal muscle undergoes a progressive necrotic

degeneration followed by repeated cycles of muscle regeneration that

prolonged over time consistently deplete the pool of satellite cells, ultimately

impairing its regenerative ability. Dystrophic muscle is also characterized by

the presence of chronic inflammation mainly represented by macrophage

infiltration, and the occurrence of fibrotic and adipose areas that are

responsible for muscle weakness and worsen the clinical outcome, especially

by impairing the function of diaphragm muscle.
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(Box 1) are clinically and molecularly heterogeneous
genetic disorders caused by mutations in genes encoding
a wide variety of proteins, such as extracellular matrix
proteins, transmembrane and membrane-associated pro-
teins, cytoplasmic enzymes, and nuclear matrix proteins,
and are characterized by primary degeneration of skeletal
muscle [20,21]. Despite this heterogeneity, MDs commonly
share a variety of clinical characteristics although to dif-
ferent extents depending on the severity of the disease,
including myofiber degeneration (necrosis) and regenera-
tion, inflammation, and fibrosis (see Figure I in Box 1).

Over the past years, a rare occurrence of RMS in human
patients affected by MDs has been reported [22,23], and
more recently the analysis of MD mouse models has helped
decipher that a permissive environment for sarcomas
establishes within the dystrophic muscle niche, especially
in aged mice (Table 1), as summarized below.

mdx mice lack functional dystrophin thus reproducing
Duchenne muscular dystrophy (DMD). In comparison to
human DMD, mdx mice exhibit a milder nonprogressive
phenotype characterized by significant muscle regenera-
tion [24–26]. The occurrence of RMS has particularly been
observed in aged mdx mice [27,28], and tumor formation
was associated with the presence of P53 mutations [28].
Consistently, double mutant P53/Mdx mice are more prone
to develop RMS [28].

The a-sarcoglycan (aSGCA) gene encodes a transmem-
brane glycoprotein stabilizing the dystrophin-associated
glycoprotein (DAG) complex and is involved in autosomal
recessive limb-girdle muscular dystrophy type 2D
(LGMD2D) [29]. As seen in mdx mice, aSGCA-deficient
mice are prone to develop ERMS in the presence of mutat-
ed, cancer-related forms of p53 [28], confirming that dis-
ruption of the p53 pathway cooperates in the formation of
RMS.

Loss of function of dysferlin, a transmembrane protein
involved in repairing the sarcolemma after muscle dam-
age, results in two types of MD, Miyoshi myopathy and
LGMD2B [30,31]. Two different dysferlin-deficient mouse
strains (A/J and C57BL/10) have been characterized and
shown to develop PRMS and mixed rhabdomyosarcomas,
fibrosarcomas and liposarcomas, respectively, especially
later in life [32,33]. Significantly, the simultaneous loss
of dystrophin and dysferlin in double mutant mice
increases the incidence of RMS [32,34].

LGMD2A is caused by mutations in the Capn3 gene
[35], encoding the muscle-specific calcium-activated neu-
tral protease calpain-3 involved in muscle remodeling [36].
Capn3-deficient mice are affected by a mild progressive
MD [37] and develop muscle-derived RMS [32]. The simul-
taneous loss of dystrophin and calpain-3 in double mutant
mice significantly augments the frequency of RMS [32].

Finally, the Large gene encodes a putative glycosyl-
transferase involved in the glycosylation of dystroglycan,
and its deletion in homozygous mutant mice is responsible
for a severe myodystrophy (myd), considered as a form of
secondary dystroglycanopathy [38–40]. Despite their con-
siderably shortened lifespan, myd mice have been found to
develop RMS, although rarely [32].

How can muscular dystrophy favor rhabdomyosarcoma
genesis?
To understand the basis of sarcoma susceptibility in dys-
trophic muscle, it is helpful to review the main, tightly
interconnected events that predispose tumor formation
(Figure 1): (i) the loss of structural or regulatory proteins
with tumor suppressor activity; (ii) the impaired response
547



Table 1. Models of dystrophic mice exhibiting development of sarcomas

Mouse models Protein (function) Homologous human

disease (severity in mouse)

Mouse lifespan Tumor spectrum Refs

Single mutant

mouse models

Mdx Dystrophin

(mechanical resistance of

muscle fibers)

DMD

(mild)

>1 year Mixed

sarcomas

[27,28,32]

Sgca�/� a-Sarcoglycan

(stabilization of the

DAG complex)

LGMD2D

(moderate)

>1 year ERMS [28]

Dysf AJ

Dysf�/� C57BL/10

Dysferlin

(repair of the sarcolemma

after muscle damage)

LGMD2B

(mild)

>1 year Mixed

sarcomas

[32,33]

Capn3tm1Jsb Calpain-3

(muscle remodeling)

LGMD2A

(mild)

>1 year Mixed

sarcomas

[32]

Large Large (glycosylation of

dystroglycan)

Myd

(moderate)

<1 year Mixed

sarcomas

[32]

Double mutant

mouse models

Mdx/P53�/� Dystrophin/

P53

ERMS [28]

Mdx/Dysf�/� Dystrophin/

Dysferlin

ERMS

PRMS

[32,34]

Mdx/Capn3�/� Dystrophin/

Calpain 3

Mixed sarcomas [32]

Abbreviations: DMD, Duchenne muscular dystrophy; LGMD2A, LGMD2B, LGMD2D, limb-girdle muscular dystrophy type 2A, 2B, 2D; Myd, myodystrophy, a secondary form

of dystroglycanopathy.
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to DNA damage; (iii) the conflicting signals arising within
the muscular niche of aged MD mice; and (iv) chronic
inflammation.

Loss of structural or regulatory proteins with tumor

suppressor activity

Reduction in protein levels of members belonging to the
DAG complex is not only responsible for skeletal muscle
damage observed in MDs but is also associated with sev-
eral types of cancer, suggesting that a functional DAG
complex may act as a tumor suppressor [41,42].

In this regard, the inactivation of dystrophin in human
melanoma cell lines is associated with enhanced migration
and invasiveness, whereas its re-expression restores a
senescent cell phenotype [43]. Utrophin, the highly related
autosomal paralog of dystrophin, is downregulated or mu-
tated in several human tumors such as breast cancer,
neuroblastomas, and malignant melanomas, and its over-
expression in breast cancer cells inhibits tumor cell growth
in vitro and in vivo [44].

Reduced expression or absence of a-dystroglycan has
been reported in human breast, prostate, and colon cancers
[41,45–47], and functional restoration of a-dystroglycan in
breast cancer cells is sufficient to reduce their tumorigenic
potential in vivo [46]. Interestingly, reduced a-dystrogly-
can expression has also been found in several pediatric
sarcomas, including ARMS and ERMS [48], supporting a
link between SGCA deregulation and RMS occurrence. In
several highly metastatic epithelial cell lines derived from
breast, cervical, and lung cancers, a-dystroglycan has been
found correctly expressed but lacking laminin-binding ac-
tivity due to defective expression of LARGE [49]. Ectopic
expression of LARGE, which is required to synthesize
laminin-binding glycans, enhanced cell adhesion and re-
duced cell migration in vitro in those cancer cells [49].
548
Consistently, the epigenetic silencing of LARGE has been
shown to result in the onset of sarcomas in the CMD1D
animal model [32,48], indicating that defective a-dystro-
glycan glycosylation is important in the occurrence of
sarcomas. In this context, other genes required for the
glycosylation of a-dystroglycan, such as fukutin and fuku-
tin-related protein (FKRP), that have been associated with
several muscle pathologies such as Fukuyama congenital
muscular dystrophy (FCMD), LGMD2I, MDC1C, Walker–
Warburg syndrome (WWS), and muscle eye brain (MEB)
disease [50,51], might predispose to tumorigenesis. For
example, fukutin silencing has been reported to increase
the proliferation of epithelial cancer cells by activating c-
jun-dependent signaling [52].

Finally, two splice variants of calpain-3, the absence of
which is responsible for LGMD2A, have been found down-
regulated in metastatic and apoptosis-resistant melanoma
cells [53], whereas overactivation of calpain-3 has been
reported in cattle urothelial tumor cells [54].

The hypothesized role of some DAG complex proteins as
tumor suppressors may reside in their ability to affect
microtubule dynamics and stability, and thus cell prolifer-
ation and migration. Indeed, dystrophin behaves as a
microtubule-associated protein (MAP) by interacting with
microtubules in skeletal muscle cells [55], and dysferlin
interacts with a-tubulin and microtubules [56], preventing
microtubule depolymerization by controlling the levels of
a-tubulin acetylation in myoblasts [57].

Impaired response to DNA damage

It has been shown that the dystrophin gene localizes within
a common fragile site (CFS) and has reduced expression in
cultured brain tumors [58], suggesting that instability of
genes adjacent to CFSs could be simultaneously associated
with multiple human diseases [59]. Actually, several
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Figure 1. Aged muscular dystrophy skeletal muscles share a subset of pathological characteristics that may provide the molecular and cellular basis of RMS susceptibility.

In particular, the accumulation of ROS, which characterizes both dystrophic and aged muscles, may have a major role in favoring RMS formation due to both the

accumulation of DNA mutations and the simultaneous impairment of the DNA damage response system. In concomitance, the profound alteration of the muscular niche

experienced by both muscular dystrophy and aged muscle can drive out several cell progenitors hosting the muscle niche from their original fate, eventually allowing

cancer formation. Abbreviations: ECM, extracellular matrix; RMS, rhabdomyosarcoma; ROS, reactive oxygen species.
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independent lines of evidence suggest that the etiology of
MDs can share some molecular mechanisms with cancer.
In this regard, the specific genomic alterations detected in
the sarcomas described in the various aforementioned MD
mouse lines, ranging from loss of tumor suppressors
(Cdkn2a, Nf1) and amplification of oncogenes (Met, Jun)
to recurrent duplications of whole chromosomes (8 and 15)
and aneuploidy [32], typically result from unrepaired DNA
double-strand breaks (DSBs) that occur during early
events in cancer development [60,61]. In accordance, a
marked activation of the major canonical DNA damage
response pathway, that is, the ataxia telangiectasia mu-
tated (ATM) kinase and its downstream target histone g-
H2AX [62–64], was observed in murine dystrophic muscle
prior to tumor formation and in different prepathologic
muscle from human DMD, LGMD2A, -2B, and -2I [32].
Consistently, impaired DNA repair has been found in
Emery–Dreifuss muscular dystrophy and a number of
different diseases collectively called laminopathies, be-
cause the mutations in the genes that encode lamins
and emerin (a lamin-associated protein) affect the struc-
tural integrity of nuclear lamina, replication, and gene
transcription, which are intimately associated with the
DNA damage repair system [65,66].

Several studies have documented the key role of oxida-
tive stress and abnormal production of reactive oxygen
species (ROS) in the pathophysiology of MDs [67,68] and
other muscular pathologies, such as sporadic inclusion
body myositis (s-IBM) [69]. Indeed, antioxidant treatments
have been shown to counteract myocyte injury in mdx mice
[70]. In particular, ROS formation appears to be a causa-
tive event rather than a consequence of muscle degenera-
tion [71], and increased ROS can cause failure to repair
DSBs, leading to genomic instability, tumorigenesis, and
age-related diseases [72]. In addition, increased ROS levels
can interfere with the activity of the ATM kinase in or-
chestrating the signaling cascades that initiate the DNA
damage response [73], therefore leading to the misrepair of
DSBs. These results suggest that genomic instability ob-
served in dystrophic muscle could likely be associated with
oxidative stress. Interestingly, the accumulation of unre-
pairable DNA damage in fibroblasts from patients with
Hutchinson–Gilford progeria syndrome, a rare disease
caused by mutations of lamin A and characterized by
accelerated aging [74], has been linked to ROS generation
and is prevented by treatment with the antioxidant, N-
acetylcysteine [75].

The first indication of age-related alterations in DSB
repair is the exponential increase in the incidence of cancer
with aging [76], because cancer is associated with genome
rearrangements and LOH. DNA repair itself can be sub-
jected to age-related changes as decline of DNA repair
549
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efficiency and fidelity leads to more mutations, and further
exacerbates age-related functional decline [77]. Because
the occurrence of sarcomas is mostly detectable in aged
dystrophic mice, it is likely that increased oxidative stress
in dystrophic muscle concurs to DNA damage prior to MD
onset and further dampens its repair, thereby allowing the
accumulation of mutations and breakpoints that predis-
pose RMS formation. Finally, it is worth noting that RMS
has been associated with constitutional mismatch repair
deficiency syndrome [78] and that altered gene expression
of several members belonging to the DNA repair system
has been reported in RMS [79].

Conflicting signals arising within the dystrophic and

aged muscle niche

The muscular niche is the microenvironment in which a
number of myogenic and nonmyogenic progenitors reside
in a systemic milieu that provides trophic support [80–83].

Sarcomas arisen in MD mice are mainly localized to the
skeletal muscle, suggesting that the cells of origin are likely
to be part of the muscle niche. Two types of stem cells reside
in this environment, SCs and multipotent stem cells
(MPSCs) [81,84,85], the latter cell population including a
variety of several progenitors displaying myogenic ability,
such as mesenchymal stem cells (MSCs) [86,87], hemato-
poietic derived cells [88–90], interstitial space-associated
cells [91,92], small vessel-associated pericytes [93,94], and
mesoangioblasts [95–97]. RMS can originate from SCs,
differentiating myoblasts and MSCs, in the presence of
certain genetic hits, such as loss of p53, gain of the Ras
pathway, and expression of PAX3–FOXO1 or PAX7–FOXO1
[9–12,98–104]. However, in light of the variety of the cell
elements that make up the niche, we cannot exclude that
RMS may originate from other cell types.

How can cell progenitors undertake a tumorigenic road
in the dystrophic muscular niche? To address this question,
we should consider that muscle stem cell potential derives
from the combination of the intrinsic properties of the cell
and the extrinsic cues from the environment [105–108],
and therefore cancer may arise as a consequence of altera-
tions of the intrinsic properties of cell progenitors, changes
in the niche and/or the systemic milieu, or, most likely, a
combination of all these factors.

As described above, cell intrinsic effects reflecting on
DNA integrity have been associated with accumulation of
oxidative damage in MD muscle, and also the individual
age-dependent decline may turn into DNA-damaging
responses [109], even in skeletal muscle [110]. Consistent-
ly, premature aging syndromes, or progeroid syndromes,
are mainly caused by defects in repairing DNA, strength-
ening the idea that aging is accelerated by an impairment
of DNA repair [111].

Within the dystrophic and aged muscle niche, the fate of
the different cell progenitors, normally resulting from the
combined action of paracrine signals provided by several
vascular, fibroadipogenic progenitors (FAPs) [112–117], and
ECM architecture [118], could be diverted to a cancerous
road by miscellaneous external conflicting signals. Indeed,
muscle-derived stem cells (MDSCs) can generate osteosar-
coma and RMS following exposure to contradictory extra-
cellular signals, that is, concomitant osteogenic and
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myogenic differentiation signals, and regardless of the oc-
currence of genetic changes [119]. Also, the aged muscular
niche can drive SCs out of quiescence [120], and this may
potentially create a permissive state for tumor formation.

A common characteristic observed during aging and in
MDs is the replenishment of the muscular tissue by fibrotic
and fat tissue. This occurs because the aged SCs can enter
alternative differentiation programs by adopting fibroblas-
tic and adipogenic fates [121,122], particularly in response
to injury [122–126], whereas MSCs can trans-differentiate
into adipocytes in DMD muscle [127,128]. These findings
suggest that the increased rate of cell trans-differentiation
observed in aged MD mice may be permissive for RMS and
also provide a rationale for explaining the frequent occur-
rence of RMS in nonmuscular tissues, because recent
results have shown that a deliberate activation of Sonic
hedgehog signaling (Shh) in mouse adipocytes is sufficient
to give rise to RMS [129].

Chronic inflammation

The inflammatory response is an early hallmark of muscle
damage necessary to activate the sequence of events re-
quired for tissue repair and the recovery of muscle homeo-
stasis [130]. A condition of chronic inflammation is found in
most muscular diseases due to either a direct involvement of
the immune/inflammatory system, as in the case of inflam-
matory myopathies, or activation of inflammatory pathways
as a consequence of structural alterations in skeletal muscle
tissue, as in the case of MDs. This association involves either
intrinsic pathways, when inflammatory responses are trig-
gered by oncogenes or tumor suppressor genes, or extrinsic
pathways, in conditions causing nonresolving smoldering
inflammation [131–133]. Notably, typical cancer-promoting
pathways are activated by inflammatory cytokines classi-
cally overexpressed in dystrophic muscles, such as tumor
necrosis factor-a (TNF-a) and interleukin-6 (IL-6). Although
high doses of TNF-a result in antitumor activity, low doses
enhance cell growth and migration in several cell types, and
may contribute to oncogene activation and thus to tumori-
genesis [134]. IL-6, a downstream effector of oncogenic Ras
[135], has proangiogenic and tumor-promoting activity in
several cancer types [136–138] and shows antiapoptotic
effects on normal and malignant epithelial cells through
the activation of STAT3, thus increasing cell survival [136].

In addition, macrophages which represent the main
component of immune cell infiltrate in dystrophic muscle
have a major role in cancer-promoting inflammation. In
particular, alternatively activated (M2) macrophages have
been involved in tumor progression because of their ability
to remodel tissues, promoting angiogenesis and suppres-
sing adaptive immunity [139,140], and a switch of macro-
phages to the M2 phenotype has been observed in the late
stage of the pathology in dystrophic mdx mice [141], thus
representing an explanation for the age-related tendency
towards RMS formation in this DMD experimental model.

Potential limitations of the association between MD
and RMS in humans
Although aged MD mice are prone to sarcoma formation,
dystrophic individuals appear to be more protected, as only
a few cases have been reported thus far [22,23]. Many
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factors can contribute to make this difference, including
the shorter average lifespan in patients, given that the
onset of RMS in mice can be clearly seen during aging. Also,
corticosteroid therapy, employed to counteract inflamma-
tion in MD patients, might represent an ‘obstacle’ to the
appearance of RMS, as MD mice are not treated with anti-
inflammatory drugs. Also, we do not know if a reduction of
the expression of DAG proteins may occur during aging,
thus favoring RMS formation.

An emerging body of evidence indicates that there are
parallelisms but also fundamental differences in how the
process of tumorigenesis occurs in mice and humans [142].
One factor that is likely to have an important role at the
organismal level is the significantly higher rate of cumu-
lative DNA damage observed in mice than in humans
because of the approximately seven times higher basal
metabolic rate in mice compared with humans, leading
to markedly increased levels of endogenous oxidants re-
sponsible for the bulk of DNA damage and accumulated
mutations [143]. Indeed, mice excrete 18-fold more break-
down products of DNA that has been damaged by endoge-
nous oxidants per kg of body weight than do humans [143].
In addition, the evolutionary development of several dis-
tinct and more efficient antineoplastic mechanisms has led
to a decrease in cancer susceptibility in humans compared
with mice [144].

Noteworthy, the mouse models of MD are frequently
characterized by a milder nonprogressive phenotype com-
pared with the human pathology. In this regard, it has
been recently shown that longer telomeres in mice protect
muscles from the exhaustion of SCs, thereby improving the
regenerative ability of dystrophic muscle [145]. We may
speculate that the presence of a less severe, long-lasting
chronic condition, as frequently recapitulated by several
mouse MD models, may result in tumor formation because
of the prolonged formation of ROS affecting the genomic
stability.

Concluding remarks
Several independent lines of evidence obtained from ani-
mal models suggest that sarcoma genesis may be elicited
by the simultaneous presence of MD and aging (Figure 1).

On the one hand, the mutated expression of DAG com-
plex-related genes can translate into loss of tumor sup-
pressor activity within a deeply subverted environment,
like that of degenerating, dystrophic muscle that is char-
acterized by compensative regeneration, chronic inflam-
mation, and fibrosis, each of which represents a tumor
predisposing factor. Consistently, dystrophic muscle is
characterized by a marked oxidative stress that may se-
verely affect genomic stability, therefore explaining the
accumulation of genetic aberrations recognized in MD mice
prior to cancer onset. In this context, the regenerating
muscular environment may greatly increase the chance
of developing RMS in the presence of cancer-associated
alterations, as observed during skeletal muscle regenera-
tion in mice lacking p53 [146].

On the other hand, an aged microenvironment is less
effective at maintaining the myogenic fate of muscle stem
cells [147] and, instead, facilitates conversion to a fibro-
genic fate through increased Wnt signaling [122]. Thus,
ambiguous signals arising in an aged and dystrophic mus-
cular niche, such as increased transforming growth factor-
b (TGF-b) signaling and fibrous tissue deposition, can
strongly affect the commitment of diverse cell progenitors.
Remarkably, aging may additionally impair the ability to
repair the genetic mutations acquired through increased
oxidative stress (due to MD), especially in animals, which
are evolutionarily less efficient in repairing DNA damage.

Finally, chronic smoldering inflammation that charac-
terizes both dystrophic and aged muscle tissue can repre-
sent a key condition predisposing RMS formation.

In conclusion, we may hypothesize that the accumula-
tion of DNA damage and the presence of confusing para-
crine signals occurring in the dystrophic, aged muscular
niche can likely change the commitment of numerous
muscle and nonmuscle cell progenitors towards a tumori-
genic fate.
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